FP1 Numerical Solutions of Equations Questions

1 (a) Show that the equation

$$x^3 + 2x - 2 = 0$$

has a root between 0.5 and 1.

(2 marks)

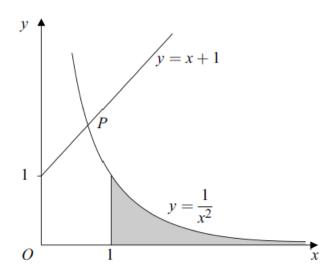
- (b) Use linear interpolation once to find an estimate of this root. Give your answer to two decimal places. (3 marks)
- 2 A curve satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \log_{10} x$$

Starting at the point (2, 3) on the curve, use a step-by-step method with a step length of 0.2 to estimate the value of y at x = 2.4. Give your answer to three decimal places. (6 marks)

(b) The diagram shows the graphs of

$$y = \frac{1}{x^2} \quad \text{and} \quad y = x + 1 \quad \text{for} \quad x > 0$$



The graphs intersect at the point P.

(i) Show that the x-coordinate of P satisfies the equation f(x) = 0, where f is the function defined in part (a). (1 mark)

- (ii) Taking $x_1 = 1$ as a first approximation to the root of the equation f(x) = 0, use the Newton-Raphson method to find a second approximation x_2 to the root.

 (3 marks)
- 2 (a) Show that the equation

$$x^3 + x - 7 = 0$$

has a root between 1.6 and 1.8.

(3 marks)

(b) Use interval bisection **twice**, starting with the interval in part (a), to give this root to one decimal place. (4 marks)

FP1 Numerical Solutions of Equations Answers

1(a)	f(0.5) = -0.875, f(1) = 1		B1		
	Change of sign, so root between		E1	2	
(b)	Complete line interpolation method		M2,1		M1 for partially correct method
	Estimated root = $\frac{11}{15} \approx 0.73$		A1	3	Allow $\frac{11}{15}$ as answer
		Total		5	
1					
	st increment is 0.2 lg 2 ≈ 0.06021 = 2.2 $\Rightarrow v \approx 3.06021$		M1 A1 A1√		or 0.2 lg 2.1 or 0.2 lg 2.2 PI PI: ft numerical error
 x					
 x 21	$x \approx 0.06021$ = 2.2 $\Rightarrow y \approx 3.06021$		A1 A1√		PI PI; ft numerical error
21	$x \approx 0.06021$ = 2.2 $\Rightarrow y \approx 3.06021$ and increment is 0.2 lg 2.2		A1 A1√ m1	6	PI PI; ft numerical error consistent with first one

(b)(i) (ii)	$x^{2}(x+1) = 1$, hence result	B1 M1A1√	1	convincingly shown (AG)
(11)	$x_2 = 1 - \frac{1}{5} = \frac{4}{5}$	A1√	3	ft c's value of f'(1)
(c)	$Area = \int_{1}^{\infty} x^{-2} dx$	M1		
	$\dots = \left[-x^{-1} \right]_{1}^{\infty}$	M1		Ignore limits here
	= 01 = 1	A1	3	

2(a)	f(1.6) = -1.304, f(1.8) = 0.632	B1,B1		Allow 1 dp throughout
	Sign change, so root between	E1	3	
(b)	f(1.7) considered first	M1		
	f(1.7) = -0.387, so root > 1.7	A1		
	$f(1.75) = 0.109375$, so root ≈ 1.7	m1A1	4	m1 for f(1.65) after error
	Total		7	